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Maxwell Relations

The thermodynamic properties obtained from the fundamental
equations of thermodynamics through first and second derivatives are
related each other. The representative relations are Maxwell relations.
The differential form for the Gibbs free energy as an example,

dG = −SdT + V dp+ µdN

then we have(
∂G

∂T

)
p,N

= −S

(
∂G

∂p

)
T,N

= V

(
∂G

∂N

)
T,p

= µ
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Maxwell Relations

The mixed second derivatives of G,[
∂

∂p

[(
∂G

∂T

)
p,N

]]
T,N

= −
(
∂S

∂p

)
T,N[

∂

∂T

[(
∂G

∂p

)
T,N

]]
p,N

=

(
∂V

∂T

)
p,N

Since G is a state function, the order of derivative does not matter,

−
(
∂S

∂p

)
T,N

=

(
∂V

∂T

)
p,N

Using the definition of volume thermal expansion coefficient α, we
have

−
(
∂S

∂p

)
T,N

=

(
∂V

∂T

)
p,N

= −V α
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Maxwell Relations

The change of entropy can be computed by

∆S =

∫ p2

p1

(
∂S

∂p

)
T,N

dp = −
∫ p2

p1

(
∂V

∂T

)
p,N

dp = −
∫ p2

p1

V αdp

Similarly, [
∂

∂N

[(
∂G

∂T

)
p,N

]]
T,p

= −
(
∂S

∂N

)
T,p[

∂

∂T

[(
∂G

∂N

)
T,p

]]
p,N

=

(
∂µ

∂T

)
p,N

We get another Maxwell relation

−
(
∂S

∂N

)
T,p

=

(
∂µ

∂T

)
p,N

= −s

where s is the molar entropy.
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Maxwell Relations

We can also write down additional Maxwell relation,[
∂

∂N

[(
∂G

∂p

)
T,N

]]
T,p

=

(
∂V

∂N

)
T,p

= v

[
∂

∂p

[(
∂G

∂N

)
T,p

]]
T,N

=

(
∂µ

∂p

)
p,N

= v

hence (
∂V

∂N

)
T,p

=

(
∂µ

∂p

)
p,N

= v

where v is the molar volume.
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Maxwell Relations

Also, we can obtain the consistent relation by

dU = TdS − pdV + µdN

(
∂T

∂V

)
S,N

= −
(
∂p

∂S

)
V,N

dF = −SdT − pdV + µdN

(
∂S

∂V

)
T,N

=

(
∂p

∂T

)
V,N

dH = TdS + V dp+ µdN

(
∂T

∂p

)
S,N

=

(
∂V

∂S

)
p,N
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Euler Relation

For the thermodynamic quantity z, we can represent

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy

For constant z,

−
(
∂z

∂x

)
y

dx =

(
∂z

∂y

)
x

dy

then proceed to (
∂y

∂x

)
z

= −

(
∂z/∂x

)
y(

∂z/∂y
)
x

✓
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Ratio of derivatives

For the thermodynamic quantity z and x, we can represent

dz =

(
∂z

∂w

)
y

dw +

(
∂z

∂y

)
w

dy

dx =

(
∂x

∂w

)
y

dw +

(
∂x

∂y

)
w

dy

For constant y,

dz =

(
∂z

∂w

)
y

dw dx =

(
∂x

∂w

)
y

dw

proceed to (
∂z

∂x

)
y

=

(
∂z/∂w

)
y(

∂x/∂w
)
y

✓
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Barocaloric Effect

For adiabatic process, when temperature and pressure changes,

dS =

(
∂S

∂T

)
p

dT +

(
∂S

∂p

)
T

dp = 0

Therefore,

dT = −
(
∂S/∂p

)
T(

∂S/∂T
)
p

dp = −−V α

Cp/T
dp =

TV α

Cp
dp

the barocaloric effect is proportional to the thermal expansion
coefficient or the rate volume change with temperature change.
Therefore, we have (

∂T

∂p

)
S

=
TV α

Cp
dp

which is positive, in general.
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Isothermal Volume Dependence of Entropy

Isothermal dependence of entropy can be rewritten by(
∂S

∂V

)
T

=

(
∂S/∂p

)
T(

∂V/∂p
)
T

By Maxwell relation,(
∂S

∂V

)
T

=

(
∂S/∂p

)
T(

∂V/∂p
)
T

= −

(
∂V/∂T

)
p(

∂V/∂p
)
T

=
α

βT
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Joule Expansion Effect

Joule Expansion Effect represents the temperature change with
respect to volume change under constant internal energy,(

∂T

∂V

)
U

By Euler relation,(
∂T

∂V

)
U

= −
(
∂U/∂V

)
T(

∂U/∂T
)
V

= −
(
∂U/∂V

)
T

CV
= − 1

CV

(
Tα

βT
− p

)
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Joule-Thompson Expansion Effect

The Joule-Thompson expansion effect can be rewritten by Euler
Relation (

∂T

∂p

)
H

= −
(
∂H/∂p

)
T(

∂H/∂T
)
p

= −
(
∂H/∂p

)
T

Cp

The differential enthalpy is

dH = TdS + V dp

Take partial derivative with respect to p at constant T ,(
∂H

∂p

)
T

= T

(
∂S

∂p

)
T

+ V
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Joule-Thompson Expansion Effect

By Maxwell relation, (
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

we have (
∂H

∂p

)
T

= −T

(
∂V

∂T

)
p

+ V

Using the definitions for the isobaric volume thermal expansion,(
∂H

∂p

)
T

= V (1− Tα)

Therefore, the magnitude of the Joule-Thomson effect of a fluid is(
∂T

∂p

)
H

= −
(
∂H/∂p

)
T(

∂H/∂T
)
p

=
V (Tα− 1)

Cp
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Grüneisen parameter

The Grüneisen parameter represents the temperature increase of a
material as the material is adiabatically compressed.

γ = −

[(
∂T/T

)(
∂V/V

)]
S

= −
(
∂ lnT

∂ lnV

)
S

= −V

T

(
∂T

∂V

)
S

= V

(
∂p

∂U

)
V

Using Maxwell relation and so on,(
∂T

∂V

)
S

= −
(
∂S/∂V

)
T(

∂S/∂T
)
V(

∂S

∂V

)
T

=

(
∂S/∂p

)
T(

∂V/∂p
)
T
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Grüneisen parameter

Therefore,

γ = −

[(
∂T/T

)(
∂V/V

)]
S

=
V

T

(
∂S/∂p

)
T(

∂V/∂p
)
T

=
V

T

−
(
∂V/∂T

)
p(

∂S/∂T
)
V

(
∂V/∂p

)
T

For monoatomic ideal gas,

α =
1

T
cv =

3R

2
βT =

1

p

then
γ =

α

ccvβT
=

1/T

c(3R/2)(1/p)
=

pV

NT (3R/2)
=

2

3
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Thermal Strain and Elastocaloric Effect

The thermal strain and elastrocaloric effects involve thermomechanical
coupling. The differential form for the Gibss free energy per unit
volume g including only the thermal and mechanical contributions is

dg = −sdT − εijdσij

where s is the entropy per unit volume.
The Maxwell relation is(

∂εij
∂T

)
σ,E,H

= αij =

(
∂s

∂σij

)
T,E,H

= α′
ij

where αij is the second-rank thermal expansion coefficient tensor, and
α′
ij is the second-rank elastocaloric coefficient tensor.
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